Volume and Lattice Points of Reflexive Simplices
نویسنده
چکیده
Using new number-theoretic bounds on the denominators of unit fractions summing up to one, we show that in any dimension d ≥ 4 there is only one d-dimensional reflexive simplex having maximal volume. Moreover, only these reflexive simplices can admit an edge that has the maximal number of lattice points possible for an edge of a reflexive simplex. In general, these simplices are also expected to contain the largest number of lattice points even among all lattice polytopes with only one interior lattice point. Translated in algebro-geometric language, our main theorem yields a sharp upper bound on the anticanonical degree of d-dimensional Q-factorial Gorenstein toric Fano varieties with Picard number one, e.g., of weighted projective spaces with Gorenstein singularities.
منابع مشابه
Laplacian Simplices Associated to Digraphs
We associate to a finite digraph D a lattice polytope PD whose vertices are the rows of the Laplacian matrix of D. This generalizes a construction introduced by Braun and the third author. As a consequence of the Matrix-Tree Theorem, we show that the normalized volume of PD equals the complexity of D, and PD contains the origin in its relative interior if and only if D is strongly connected. In...
متن کاملThe Boundary Volume of a Lattice Polytope
For a d-dimensional convex lattice polytope P , a formula for the boundary volume vol(∂P ) is derived in terms of the number of boundary lattice points on the first bd/2c dilations of P . As an application we give a necessary and sufficient condition for a polytope to be reflexive, and derive formulae for the f -vector of a smooth polytope in dimensions 3, 4, and 5. We also give applications to...
متن کاملOn the Maximal Width of Empty Lattice Simplices
A k-dimensional lattice simplex σ ⊆ Rd is the convex hull of k + 1 affinely independent integer points. General lattice polytopes are obtained by taking convex hulls of arbitrary finite subsets of Zd . A lattice simplex or polytope is called empty if it intersects the lattice Zd only at its vertices. (Such polytopes are studied also under the names elementary and latticefree.) In dimensions d >...
متن کاملAn Introduction to Empty Lattice Simplices
We study simplices whose vertices lie on a lattice and have no other lattice points. Suchèmpty lattice simplices' come up in the theory of integer programming, and in some combi-natorial problems. They have been investigated in various contexts and under varying terminology Can thèemptiness' of lattice simplices bèwell-characterized' ? Is theirìattice-width' small ? Do the integer points of the...
متن کاملMaximal integral simplices with no interior integer points
In this paper, we consider integral maximal lattice-free simplices. Such simplices have integer vertices and contain integer points in the relative interior of each of their facets, but no integer point is allowed in the full interior. In dimension three, we show that any integral maximal latticefree simplex is equivalent to one of seven simplices up to unimodular transformation. For higher dim...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Discrete & Computational Geometry
دوره 37 شماره
صفحات -
تاریخ انتشار 2007